
Geospatial Operation using Apache Spark

Akash Nishar

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

Aritra Kumar Lahiri

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

Arun Subramanian

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

Milind Jindal

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

Rohit Singh

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

Venkata Sai Girish Konda

School of Computing, Informatics,

and Decision Systems Engineering,

Arizona State University

Tempe, USA

ABSTRACT

The rapid increase in volume of data in

terms of size as well as in terms of location specific

applications has led to the emergence of developing

the spatial operations for performance and

scalability purposes. In this project, seven of the

most important spatial operations were designed and

implemented, namely polygon union, convex hull,

farthest pair of points, closest pair of points, spatial

join, spatial range and spatial aggregation. The

algorithm is built on Apache Spark framework

interfacing with the Hadoop Distributed File System

for faster in memory computations and efficient

processing of very large datasets across multiple

nodes. The following sections describe the

implementation algorithms and experimental

analysis along with an example of Tweet Heat Map,

a real world application which is based on spatial

aggregation.

Categories and Subject Descriptors

Spatial Operations, Spatial Join, Spatial Range,

Spatial Union, Spatial Farthest Point, Spatial Closest

Pair of Points, Convex Hull, Spatial Aggregation

(Heat Map).

General Terms

Distributed Systems, Apache Hadoop, Apache

Spark, Spatial Queries, Resilient Distributed

Dataset, Hadoop Distributed File System.

Keywords

Scala, Java, RDD, HDFS, broadcast variable.

1. INTRODUCTION

This paper contains a detailed

implementation plan and experimental evaluation

analysis when the above mentioned Geo spatial

operations were carried out in a distributed system.

Resilient Distributed Datasets (RDDs) were used as

because the operations were iterative in nature.

The paper is divided into five sections. The

second section throws light on the architecture of

Spark and Apache Hadoop as it is very important for

our readers to know a bit about Spark and the HDFS

file system to evaluate our paper better. The section

following it gives enunciates the implementation of

each of the Geo-spatial method in great details. And

finally the experimental setup and details section

provides thorough technical analysis of the

commodity hardware used and the out efficiency of

each of the above mentioned Geo-spatial operations.

An appendix section enunciating the actual values of

memory utilization, CPU utilization and network

cost have also been added for readers to evaluate our

approach better.

2. ARCHITECTURE

2.1 Apache Spark

Apache Spark is an open-source cluster

computing framework originally developed in the

AMPLab at UC Berkeley. [1] Spark requires a

cluster manager and a distributed storage system.

For cluster management, Spark supports standalone

(native Spark cluster), Hadoop YARN, or Apache

MESOS. For distributed storage, Spark can

interface with a wide variety, including Hadoop

Distributed File System (HDFS), Cassandra,

OpenStack Swift, and Amazon S3. Spark also

supports a pseudo-distributed local mode, usually

http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/UC_Berkeley
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Apache_Mesos
http://en.wikipedia.org/wiki/Apache_Mesos
http://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
http://en.wikipedia.org/wiki/Apache_Hadoop#Hadoop_distributed_file_system
http://en.wikipedia.org/wiki/Apache_Cassandra
http://en.wikipedia.org/wiki/OpenStack#Object_Storage_.28Swift.29
http://en.wikipedia.org/wiki/Amazon_S3

used only for development or testing purposes,

where distributed storage is not required and the

local file system can be used instead; in this

scenario, Spark is running on a single machine with

one executor per CPU core.

The main abstraction Spark provides is

a resilient distributed dataset (RDD), which is a

collection of elements partitioned across the nodes

of the cluster that can be operated on in parallel.

RDDs are created by starting with a file in the

Hadoop file system (or any other Hadoop-supported

file system), or an existing Scala collection in the

driver program, and transforming it. Users may also

ask Spark to persist an RDD in memory, allowing it

to be reused efficiently across parallel operations.

Finally, RDDs automatically recover from node

failures.

RDDs support two types of operations:

transformations, which create a new dataset from

an existing one, and actions, which return a value to

the driver program after running a computation on

the dataset.

All transformations in Spark are lazy, in that

they do not compute their results right away.

Instead, they just remember the transformations

applied to some base dataset (e.g. a file). The

transformations are only computed when an action

requires a result to be returned to the driver

program. This design enables Spark to run more

efficiently

A second abstraction in Spark is shared

variables that can be used in parallel operations.

Spark supports two types of shared

variables: broadcast variables, which can be used to

cache a value in memory on all nodes,

and accumulators, which are variables that are only

“added” to, such as counters and sums.

2.2 Apache Hadoop

Apache Hadoop is an open source software

framework written in Java for processing and

storage of very large distributed data over clusters

built from commodity hardware. The Apache

Hadoop can be broadly differentiated into two parts

- storage part, which is the Hadoop Distributed File

System (HDFS) and the processing part, which is

the Map-Reduce. Hadoop splits the files into a

specific sized blocks and distributes them among the

nodes present in the cluster. Thus this phenomenon

helps data to be processed much faster and

efficiently ensuring parallel operation on the large

sized data.

The Hadoop architecture consists of the

Hadoop common package which provides files and

OS level abstractions, the Map Reduce processing

engine and the HDFS. The Hadoop Common

Package contains the necessary JAR files needed to

start the Hadoop.

A small Hadoop cluster contains a single

master and multiple worker nodes. Master has the

following parts - Job Tracker, Task Tracker, Name

Node and Data Node. The worker node does the job

of a Data Node and Task Tracker. In a large cluster

the HDFS is managed through a Name Node server

and a secondary Name Node which has the ability to

generate selected portions of the Name Node server.

This helps in prevention of loss or damage of data.

The HDFS is a distributed, scalable and

portable file system written in Java for Hadoop

network. The advantages of HDFS are - a) Ability to

store very large data over distributed system across

multiple machines. b) High reliability by replication

of data over multiple nodes. c) High availability by

having backup to the main Name Node Server. d)

Data Awareness among the Job Tracker and Task

Tracker.

Map Reduce is the processing engine that

contains one of the Job Tracker which keeps track of

the jobs submitted by client applications. The Job

Tracker then delegates the job across the nodes in

the cluster through Task Tracker according to their

availability.

Fig 1 Depicts the Hadoop architecture.

http://en.wikipedia.org/wiki/CPU_core

2.3 Spatial Spark

The architecture of Apache Hadoop and

Spark were utilized in this project. The data layer

was comprised of HDFS and the Native file system

of Ubuntu “ext4”. The application layer was

implemented in the Spark framework using the Java

language API. The whole system comprised of 4

machines. The details of those machine is mentioned

in the implementation details.

The HDFS was run over the four nodes,

with one node running the master i.e. the Name

Node daemon. The other three nodes designated as

the worker nodes were made the data nodes for this

project. The SPARK master was placed on the same

machine as the Name Node to reduce any

complexity of setting up the architecture. The other

three nodes were made the workers for spark for this

project.

3. IMPLEMENTATION DETAILS

3.1 Farthest Point

In farthest pair operation, the input provided

is set of n points in the form of (x, y) in a rectangle

coordinate system and output of the operation is a

pair of points which are having the highest distance.

The implementation approach for this operation is

first find the point lying on convex hull because the

farthest pair points all lies on convex hull. This step

can be done in O (nlogn) time. Now once points on

convex hull are obtained, apply Rotating Calipers

algorithm over this points to find the farthest points.

This step can be done in O (n) time. So the overall

operation can be done in O (nlogn) time. The

farthest points operation is an iterative operation and

can be done on Apache Spark using Map Partition

and Reduce function. Here to find the farthest

points, the computation is dependent on all other

points, so we will use broadcast variable for storing

the information of all points on each partition.

3.2 Closest Pair

Closest Pair operation finds a closest pair of

points given a set of points. Input to this operation is

a set of points in the Cartesian coordinate system

and output is a pair of closest points in the same

format. The approach used for this operation is

recursive divide and conquer. In this approach, we

will first read the input points as tuples into an

RDD. The RDD is then sorted using the sortBy

function in a distributed fashion. The RDD is then

partitioned into left and right partition RDDs based

on the median x-coordinate using the filter function.

Closest pair in each partition is found recursively

using the divide and conquer approach using the

map and reduce functions. Closest pair across the

partitions is found and compared with the other

closest pairs found from each partition and

minimum of all the three is returned as an RDD and

stored in HDFS. The time complexity of the sorting

phase is O (nlogn).There are a total of O (logn)

divides and merge takes O (n). So overall time

complexity will become O (logn).

3.3 Convex Hull

The Conex Hull was implemented using the

Graham Scan’s algorithm. The input of co-ordinates

were given in the form of a file, which were read

into RDDs in the form of tuples per line. The tuple

containing the lowest y co-ordinate was filtered out

.The obtained RDD was further transformed into

another RDD comprising of tuples in form of (

x1,y1,r,θ); where x1,y1 are the rectangular co-

ordinates and r,θ are the polar co-ordinates of the

corresponding rectangular co-ordinate. The theta

angle was computed with the point having the

lowest y co-ordinate. Graham Scan [9] algorithm

was then applied to RDD set. Thus the Convex Hull

algorithm was run in a distributed manner and the

“local” convex hull was at each node was computed.

The results (of this intermediate stage) were

gathered into another RDD. Thus points were

filtered out and only the points that may constitute

the “global” convex hull were kept. Graham Scan

was applied again on the reduced set and the final

convex hull was obtained. The obtained result was

stored again into HDFS in the form of a text file

were each line constituted a tuple.

3.4 Polygon Union

In polygon union, the input provided is a set

of n polygons in the form of (x1, y1, x2, y2) where

(x1, y1) and (x2, y2) are the opposite diagonal

points of a rectangle. The output of the operation

should be a set of boundary points that forms the

union of all n polygons. To implement these

operation, we will be using a JTS Topology Suite

Java library by Vivid Solutions Inc. The union

operation is an iterative operation and can be done

on Apache Spark using a Reduce function. Also the

union operation is dependent on input of two

polygon, so it is easily implemented on a distributed

environment.

3.5 Spatial Range Query

In Spatial Range, the input provided is a set

of points(x1, y1) and a set of query windows(x1, y1,

x2, y2). The values of these variables represent the

geometric locations of the polygons present in a

geometric space. The windows are taken as the input

in an RDD and then stored as a list, which is treated

as a broadcast variable. Then with this list, a final

filter method is applied where if the point falls in

any of the window then that point is kept and “true”

Boolean is returned, if the point does not occur in

any of the windows then the point is not considered

and is discarded by giving a false value as output.

The output of the code is written as a text file with

all the points that fall in the windows in a text file in

HDFS.

3.6 Spatial Join Query

In Spatial Join , the input provided is a set

of points (x1,y1,x2,y2) in a window and a set of

polygons (px1, px2, py1, py2) where (x1,y1) ,

(px1,py1) and (x2,y2) and (px2, py2) are the x and y

coordinates denoting the latitude and longitude of

the window points and the set of polygons. To

implement this operation, at first a JavaRDD is

taken to get each of the polygons windows. Then a

broadcast list variable is created, much the same

way as for the spatial range query. This broadcast

variable is fed to a pair function. For every polygon

present in the JavaRDD for the points, the windows

are iterated over and if the polygon lies inside the

window, the window is added to another list which

is paired with that point and the value is returned in

an RDD. The JavaRDD is then stored to a simple

text file in HDFS

3.7 Join Aggregation

In spatial aggregation, the input is a set of

window polygons (x1, y1, x2, y2) and a set of points

(x1, y1). The expected output is for all the windows,

a count of the number of points that lie inside that

window should be given. For the implementation of

this code, first of all the window points were taken

as input in an RDD as a broadcast variable, then a

flat map was created, which mapped each of the

points to give out a mapping of a window and an

integer value 1, which indicated that this window

has encountered this point once. Once this flat map

was created, the output of this had to be created into

a simple key value pair. This was achieved through

reading the output RDD and creating a string

variable as the key, which included all the points of

the window polygon appended, separated by

underscores. Once these key-value mappings were

created, these had to be reduced into simple form

through adding the integer values for all the

respective keys or polygons. This was done by

making a “reduce-by-key” function which only

aggregated the integer values for the keys present in

the RDD. The output of this code came out as a

String key with the value as the number of points

that fall inside that particular window. This output is

written into a flat file in HDFS.

4. EXPERIMENTAL SETUP

Experiment was perform on a LAN with a

capacity of 100Mbps transfer rate. Experiment uses

3 nodes as a worker and 1 node as a master. The

hardware configuration on each node is provided

below:

Table 1

Node (Master / Worker) Memory Processor

Node 1 (M & W) 8 GB 4th Gen, Intel i5

Node 2 (W) 4GB 4th Gen, Intel i5

Node 3 (W) 8GB 4th Gen, Intel i5

Node 4 (W) 8GB 4th Gen, Intel i5

A HDFS cluster is also formed consists of

all above nodes for storing of input and output files.

A replication factor of 2 is used for partition

tolerance. While consistency and availability was

handle by HDFS. The experiment uses 4 datasets of

5MB, 50MB, 100MB, and 200MB respectively to

perform regression testing on each functions.

5. EXPERIMENTAL DETAILS

Experiments were conducted using

experimental setup parameters and following results

are obtained. The following are the time

(Millisecond) vs Dataset size (Megabyte) graph for

each operation.

The variations done were the number of

nodes in the cluster, the size of the data used and the

different operations being performed. The time

taken for all of the operations was noted and graphs

were made out of them.

5.1 Farthest Point

The experimental result for the farthest

points operation suggests that as the dataset size

increases, the time taken for the operation first

increases in O (nlogn) time but at later stage with

large dataset it increases in O (n^2) time. Also as we

increases number of nodes (i.e. scale out), the time

taken for operation is almost increasing linearly with

dataset size.

 The experimental result for the farthest

points operation suggests that as the dataset size

increases, the time taken for the operation first

increases in O (nlogn) time but at later stage with

large dataset it increases in O (n^2) time. Also as we

increases number of nodes (i.e. scale out), the time

taken for operation is almost increasing linearly with

dataset size.

5.2 Closest Pair

The plot shows that the time taken for

closest pair improved with increase in number of

nodes. The graph appears impeccable as with

increase in number of nodes data gets partitioned

across various nodes and operation is parallelized

and as operation returns only a pair of points at each

recursion, network overhead is not significant.

5.3 Convex Hull

The graph suggests that the time taken for

the output of the code for Convex Hull increases

with increase in dataset(as expected) but shows a

degradation of time taken when the number of nodes

is increased (keeping the data size same). The

efficiency is non-linear as for smaller datasets the

network overhead trumps the computational

rescources added. We can thus see that maxium gain

has been obtained when the dataset of around 200

MB was considered and was run on cluster of 4

nodes.

5.4 Polygon Union

The graph suggests that the time taken for

getting the output of union operation increases with

increase in the size of the dataset. The time taken for

small dataset of 5MB is almost same even when run

on multiple nodes as the netwrok cost and

communication cost is also added. But with the

increase in number of nodes , the time taken for

union decreases as the dataset size is increased.We

can also observe that as the number of nodes are

increased the running time decreses for the given

size of dataset.

5.5 Spatial Range Query

The spatial range query is shown to take

higher time for single node, which is as expected.

The abnormality is when the nodes are increased

from 3 to 4. The graphs for 3 nodes and 4 nodes

overlap almost exactly on each other. This is

because when increasing the number of nodes, the

parallelism increases, but the network cost and the

communication cost in general also increases, so the

system has to spend more time in communication.

5.6 Spatial Join Query

The graph suggests that the time taken for

the output of the code for spatial Join query was

similar when tested with 2 , 3 or 4 nodes, this is

because of the case that even when the files were

copied to the cluster of hadoop, the files got stored

only at 2 machines and not other machines, as the

replication factor was kept as 2. The graph rightly

shows an increased time taken when there was only

one node present in the Hadoop cluster, which is

quite logical as the amount of distribution to be

managed by a single node is much higher with a

replication factor of 2. And all the memory

utilizations were to be managed by a single machine

and not a cluster of machines.

5.7 Spatial Aggregation

The experimental results for the spatial

aggregation show that the code takes much less time

for a multinode cluster as compared to that for a 1

node cluster. The drop in time is sizeable for a shift

from a single node to 2 nodes in a cluster, but the

time dips only slightly for movement from 2 nodes

to 3 nodes and 3 nodes to 4 nodes. Also it can be

observed from the graph that the time remains

nearly constant even after increasing the data size

frm 5 MB to 200 MB. This shows that the context

required to maintain a data size of 5 MB is much

more as compared to the data itself, but as the data

size increases the context becomes less relevant and

is correctly reflected in the graph.

6. CONCLUSION

The spatial operations that were written in

spark are complex operations to be written in a

distributed manner. The operations if done in a

single node system can be easily written. But the

overall time complexity of the distributed code

becomes relevant only when the data size becomes

huge. The data sizes provided for the current project

were of 200MB. Which can be easily

accommodated in memory in single node code

structure. Overall, writing the code for the spatial

operations in Spark is much more complex as

compared to that written in a single system

architecture. Spark is an evolving technology and

much work needs to be done over it to make it more

robust and flexible for making durable code. The in-

memory architecture is a very big advantage in case

of the distributed architectures as the hardware is

getting inexpensive by the day. Other distributed

frameworks such as Map-reduce are much more

flexible but have a number of constraints which

Spark has tried to overcome. Map-Reduce in

particular has seen a lot of enhancements and

architecture level upgrades, which has made it more

flexible to code and extend.

7. REFERENCES

[1] Wikimedia Foundation, Inc. Apache Spark 2014.

http://en.wikipedia.org/wiki/Apache_Spark

[2] The Apache Software Foundation 2015. Spark,

Lightning fast cluster computing.

https://spark.apache.org/

http://en.wikipedia.org/wiki/Apache_Spark
https://spark.apache.org/

[3] Databricks: Intro to Apache Spark 2014.

http://stanford.edu/~rezab/sparkclass/slides/itas_wor

kshop.pdf

[4] The Apache Software Foundation 2014. Hadoop,

Welcome to Apache Hadoop.

https://hadoop.apache.org/

[5] Wikimedia Foundation, Inc. 2014.

Computational Geometry.

http://en.wikipedia.org/wiki/Computational_geometr

y

[6] Wikimedia Foundation, Inc. 2014. Convex Hull.

http://en.wikipedia.org/wiki/Convex_hull

[7] Knoll, Michael G. 2014-2015. Running Hadoop

on Ubuntu Linux (Single-Node Cluster).

http://www.michael-noll.com/tutorials/running-

hadoop-on-ubuntu-linux-single-node-cluster/

[8] Knoll, Michael G. 2014-2015. Running Hadoop

on Ubuntu Linux (Multi-Node Cluster).

http://www.michael-noll.com/tutorials/running-

hadoop-on-ubuntu-linux-multi-node-cluster/

[9] Graham, R.L. (1972). An Efficient Algorithm for

Determining the Convex Hull of a Finite Planar Set.

Information Processing Letters 1, 132-133

APPENDIX A:

1. Farthest Point

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 24 5.1 10 180 5

1 25 5.2 11 632 50

1 36 6.3 13 1190 100

1 53 7.4 14 3132 200

2 20 25 6.25 12.5 100 110 200 5

2 23 29 7.30 14.5 105 105 410 50

2 33 39 6.85 13.8 105 105 817 100

2 52 60 8.05 19.30 105 105 1417 200

3 20 25 20 6.25 12.5 6.25 105 105 105 150 5

3 23 29 23 7.30 14.5 7.30 105 105 105 390 50

3 33 39 33 6.85 13.8 6.85 105 105 105 689 100

3 52 60 52 8.05 19.30 8.05 105 105 105 945 200

http://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
http://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf
https://hadoop.apache.org/
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Convex_hull
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.math.ucsd.edu/~ronspubs/72_10_convex_hull.pdf
http://www.math.ucsd.edu/~ronspubs/72_10_convex_hull.pdf

2. Closest Pair

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 24 5.1 10 190 5

1 25 5.2 11 642 50

1 36 6.3 13 1195 100

1 53 7.4 14 3150 200

2 25 29 4.7 9.2 105 110 205 5

2 27 31 6.1 11.3 105 105 454 50

2 32 37 7.2 13.1 105 105 793 100

2 45 52 9.2 18.4 105 105 1022 200

3 20 25 20 6.25 12.5 6.25 105 105 105 212 5

3 23 29 23 7.30 14.5 7.30 105 105 105 403 50

3 33 39 33 6.85 13.8 6.85 105 105 105 650 100

3 52 60 52 8.05 19.30 8.05 105 105 105 967 200

3. Convex Hull

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 15 4.3 10 134 5

1 25 7.1 10 502 50

1 29 8.2 11 980 100

1 37 9.1 11 1603 200

2 19 36 4.3 9.9 90 85 156 5

2 23 39 7.6 8.3 1200 790 360 50

2 24 45 8.3 8.2 3867 968 750 100

2 27 54 9.1 9.3 4722 1512 1350 200

3 19 32 22 5.1 4.9 9.7 100 110 180 145 5

3 25 32 22 7.1 15.9 7.2 2500 620 500 280 100

3 28 35 25 8.2 17.8 8.3 3400 2700 2560 560 50

3 31 37 29 9.1 19.5 8.5 3800 2900 2800 985 200

4. Polygon Union

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 24 5.1 10 180 5

1 25 5.2 14 632 50

1 36 6.3 12 1190 100

1 53 7.4 11 3132 200

2 25 228 5.0 9.2 1052 1010 187 5

2 27 33 6.5 11.3 1045 1005 520 50

2 32 39 7.7 13.1 1100 1050 989 100

2 45 52 9.9 18.4 1120 1070 2096 200

3 20 25 20 6.25 10.5 6.25 1052 1010 1048 192 5

3 23 29 23 7.30 13.5 7.30 1045 1005 1040 455 50

3 33 39 33 6.85 13.8 6.85 1100 1050 1090 876 100

3 52 60 52 8.05 19.30 8.05 1120 1070 1120 1654 200

5. Spatial Range Query

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 24 5.1 10 50 5

1 29 5.2 11 240 50

1 36 6.3 13 560 100

1 45 7.4 14 1250 200

2 25 29 4.7 9.2 105 110 45 5

2 27 31 6.1 11.3 105 105 225 50

2 32 37 7.2 13.1 105 105 480 100

2 45 52 9.2 18.4 105 105 996 200

3 20 25 24 5.25 11.5 5.25 105 105 105 50 5

3 23 29 22 6.60 11.5 6.60 105 105 105 230 50

3 33 39 35 6.85 13.8 6.85 105 105 105 390 100

3 52 60 52 8.05 19.30 8.05 105 105 105 680 200

6. Spatial Join Query

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 12 5.5 10 65 5

1 24 6.4 11 280 50

1 29 7.8 13 650 100

1 35 8.1 14 1420 200

2 18 20 5.4 4.5 105 110 55 5

2 12 15 6.6 7.0 150 150 250 50

2 27 25 7.5 8.0 150 150 590 100

2 40 38 8.7 9.6 150 150 1350 200

3 20 25 20 5.0 12.5 6.25 150 150 150 60 5

3 23 29 23 7.3 14.5 7.30 150 150 150 220 50

3 33 39 33 8.4 13.8 6.85 150 150 150 420 100

3 50 55 48 8.6 19.30 8.05 150 150 150 940 200

7. Spatial Aggregation

Number

of nodes

CPU utilization (%) Memory utilization

(% of total RAM)

Communication

Cost (KBps)

Runtime

(second)

Data

Size (MB)

1 24 5.1 10 80 5

1 25 5.2 11 280 50

1 36 6.3 13 650 100

1 53 7.4 14 1420 200

2 25 29 4.7 5.5 150 150 85 5

2 27 31 6.1 5.0 150 150 250 50

2 32 37 7.2 6.9 150 150 590 100

2 45 52 9.2 10.1 150 150 1350 200

3 20 25 20 60 12.5 6.25 150 150 150 75 5

3 23 29 23 220 14.5 7.30 150 150 150 220 50

3 33 39 33 420 13.8 6.85 150 150 150 420 100

3 52 60 52 940 19.30 8.05 150 150 150 940 200

