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ABSTRACT 

The rapid increase in volume of data in 

terms of size as well as in terms of location specific 

applications has led to the emergence of developing 

the spatial operations for performance and 

scalability purposes. In this project, seven of the 

most important spatial operations were designed and 

implemented, namely polygon union, convex hull, 

farthest pair of points, closest pair of points, spatial 

join, spatial range and spatial aggregation. The 

algorithm is built on Apache Spark framework 

interfacing with the Hadoop Distributed File System 

for faster in memory computations and efficient 

processing of very large datasets across multiple 

nodes. The following sections describe the 

implementation algorithms and experimental 

analysis along with an example of Tweet Heat Map, 

a real world application which is based on spatial 

aggregation.   

Categories and Subject Descriptors 

Spatial Operations, Spatial Join, Spatial Range, 

Spatial Union, Spatial Farthest Point, Spatial Closest 

Pair of Points, Convex Hull, Spatial Aggregation 

(Heat Map). 

General Terms 

Distributed Systems, Apache Hadoop, Apache 

Spark, Spatial Queries, Resilient Distributed 

Dataset, Hadoop Distributed File System. 

Keywords 

Scala, Java, RDD, HDFS, broadcast variable. 

 

1. INTRODUCTION 

This paper contains a detailed 

implementation plan and experimental evaluation 

analysis when the above mentioned Geo spatial 

operations were carried out in a distributed system. 

Resilient Distributed Datasets (RDDs) were used as 

because the operations were iterative in nature.  

The paper is divided into five sections. The 

second section throws light on the architecture of 

Spark and Apache Hadoop as it is very important for 

our readers to know a bit about Spark and the HDFS 

file system to evaluate our paper better. The section 

following it gives enunciates the implementation of 

each of the Geo-spatial method in great details. And 

finally the experimental setup and details section 

provides thorough technical analysis of the 

commodity hardware used and the out efficiency of 

each of the above mentioned Geo-spatial operations. 

An appendix section enunciating the actual values of 

memory utilization, CPU utilization and network 

cost have also been added for readers to evaluate our 

approach better. 

2. ARCHITECTURE 

2.1 Apache Spark 

Apache Spark is an open-source cluster 

computing framework originally developed in the 

AMPLab at UC Berkeley. [1] Spark requires a 

cluster manager and a distributed storage system. 

For cluster management, Spark supports standalone 

(native Spark cluster), Hadoop YARN, or Apache 

MESOS.  For distributed storage, Spark can 

interface with a wide variety, including Hadoop 

Distributed File System (HDFS), Cassandra,  

OpenStack Swift, and Amazon S3. Spark also 

supports a pseudo-distributed local mode, usually 

http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/UC_Berkeley
http://en.wikipedia.org/wiki/Apache_Hadoop
http://en.wikipedia.org/wiki/Apache_Mesos
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used only for development or testing purposes, 

where distributed storage is not required and the 

local file system can be used instead; in this 

scenario, Spark is running on a single machine with 

one executor per CPU core. 

The main abstraction Spark provides is 

a resilient distributed dataset (RDD), which is a 

collection of elements partitioned across the nodes 

of the cluster that can be operated on in parallel. 

RDDs are created by starting with a file in the 

Hadoop file system (or any other Hadoop-supported 

file system), or an existing Scala collection in the 

driver program, and transforming it. Users may also 

ask Spark to persist an RDD in memory, allowing it 

to be reused efficiently across parallel operations. 

Finally, RDDs automatically recover from node 

failures. 

RDDs support two types of operations:  

transformations, which create a new dataset from 

an existing one, and actions, which return a value to 

the driver program after running a computation on 

the dataset.  

All transformations in Spark are lazy, in that 

they do not compute their results right away. 

Instead, they just remember the transformations 

applied to some base dataset (e.g. a file). The 

transformations are only computed when an action 

requires a result to be returned to the driver 

program. This design enables Spark to run more 

efficiently 

A second abstraction in Spark is shared 

variables that can be used in parallel operations. 

Spark supports two types of shared 

variables: broadcast variables, which can be used to 

cache a value in memory on all nodes, 

and accumulators, which are variables that are only 

“added” to, such as counters and sums. 

 

2.2 Apache Hadoop 

Apache Hadoop is an open source software 

framework written in Java for processing and 

storage of very large distributed data over clusters 

built from commodity hardware. The Apache 

Hadoop can be broadly differentiated into two parts 

- storage part, which is the Hadoop Distributed File 

System (HDFS) and the processing part, which is 

the Map-Reduce. Hadoop splits the files into a 

specific sized blocks and distributes them among the 

nodes present in the cluster. Thus this phenomenon 

helps data to be processed much faster and 

efficiently ensuring parallel operation on the large 

sized data.  

The Hadoop architecture consists of the 

Hadoop common package which provides files and 

OS level abstractions, the Map Reduce processing 

engine and the HDFS. The Hadoop Common 

Package contains the necessary JAR files needed to 

start the Hadoop. 

A small Hadoop cluster contains a single 

master and multiple worker nodes. Master has the 

following parts - Job Tracker, Task Tracker, Name 

Node and Data Node. The worker node does the job 

of a Data Node and Task Tracker. In a large cluster 

the HDFS is managed through a Name Node server 

and a secondary Name Node which has the ability to 

generate selected portions of the Name Node server. 

This helps in prevention of loss or damage of data.  

The HDFS is a distributed, scalable and 

portable file system written in Java for Hadoop 

network. The advantages of HDFS are - a) Ability to 

store very large data over distributed system across 

multiple machines. b) High reliability by replication 

of data over multiple nodes. c) High availability by 

having backup to the main Name Node Server. d) 

Data Awareness among the Job Tracker and Task 

Tracker. 

Map Reduce is the processing engine that 

contains one of the Job Tracker which keeps track of 

the jobs submitted by client applications. The Job 

Tracker then delegates the job across the nodes in 

the cluster through Task Tracker according to their 

availability. 

  

Fig 1 Depicts the Hadoop architecture. 

http://en.wikipedia.org/wiki/CPU_core


2.3 Spatial Spark 

The architecture of Apache Hadoop and 

Spark were utilized in this project. The data layer 

was comprised of HDFS and the Native file system 

of Ubuntu “ext4”. The application layer was 

implemented in the Spark framework using the Java 

language API. The whole system comprised of 4 

machines. The details of those machine is mentioned 

in the implementation details. 

The HDFS was run over the four nodes, 

with one node running the master i.e. the Name 

Node daemon. The other three nodes designated as 

the worker nodes were made the data nodes for this 

project. The SPARK master was placed on the same 

machine as the Name Node to reduce any 

complexity of setting up the architecture. The other 

three nodes were made the workers for spark for this 

project. 

3. IMPLEMENTATION DETAILS 

3.1 Farthest Point 

In farthest pair operation, the input provided 

is set of n points in the form of (x, y) in a rectangle 

coordinate system and output of the operation is a 

pair of points which are having the highest distance. 

The implementation approach for this operation is 

first find the point lying on convex hull because the 

farthest pair points all lies on convex hull. This step 

can be done in O (nlogn) time. Now once points on 

convex hull are obtained, apply Rotating Calipers 

algorithm over this points to find the farthest points. 

This step can be done in O (n) time. So the overall 

operation can be done in O (nlogn) time. The 

farthest points operation is an iterative operation and 

can be done on Apache Spark using Map Partition 

and Reduce function. Here to find the farthest 

points, the computation is dependent on all other 

points, so we will use broadcast variable for storing 

the information of all points on each partition. 

3.2 Closest Pair 

Closest Pair operation finds a closest pair of 

points given a set of points. Input to this operation is 

a set of points in the Cartesian coordinate system 

and output is a pair of closest points in the same 

format. The approach used for this operation is 

recursive divide and conquer. In this approach, we 

will first read the input points as tuples into an 

RDD. The RDD is then sorted using the sortBy 

function in a distributed fashion. The RDD is then 

partitioned into left and right partition RDDs based 

on the median x-coordinate using the filter function. 

Closest pair in each partition is found recursively 

using the divide and conquer approach using the 

map and reduce functions. Closest pair across the 

partitions is found and compared with the other 

closest pairs found from each partition and 

minimum of all the three is returned as an RDD and 

stored in HDFS. The time complexity of the sorting 

phase is O (nlogn).There are a total of O (logn) 

divides and merge takes O (n). So overall time 

complexity will become O (logn). 

3.3 Convex Hull 

The Conex Hull was implemented using the 

Graham Scan’s algorithm. The input of co-ordinates 

were given in the form of a file, which were read 

into RDDs in the form of tuples per line. The tuple 

containing the lowest y co-ordinate was filtered out 

.The obtained RDD was further transformed into 

another RDD comprising of tuples in form of ( 

x1,y1,r,θ); where x1,y1 are the rectangular co-

ordinates and r,θ are the polar co-ordinates of the 

corresponding rectangular co-ordinate. The theta 

angle was computed with the point having the 

lowest y co-ordinate. Graham Scan [9] algorithm 

was then applied to RDD set. Thus the Convex Hull 

algorithm was run in a distributed manner and the 

“local” convex hull was at each node was computed. 

The results (of this intermediate stage) were 

gathered into another RDD. Thus points were 

filtered out and only the points that may constitute 

the “global” convex hull were kept. Graham Scan 

was applied again on the reduced set and the final 

convex hull was obtained. The obtained result was 

stored again into HDFS in the form of a text file 

were each line constituted a tuple. 

3.4 Polygon Union 

In polygon union, the input provided is a set 

of n polygons in the form of (x1, y1, x2, y2) where 

(x1, y1) and (x2, y2) are the opposite diagonal 

points of a rectangle. The output of the operation 

should be a set of boundary points that forms the 

union of all n polygons. To implement these 

operation, we will be using a JTS Topology Suite 

Java library by Vivid Solutions Inc. The union 

operation is an iterative operation and can be done 

on Apache Spark using a Reduce function. Also the 

union operation is dependent on input of two 

polygon, so it is easily implemented on a distributed 

environment. 

 



3.5 Spatial Range Query 

In Spatial Range, the input provided is a set 

of points(x1, y1) and a set of query windows(x1, y1, 

x2, y2). The values of these variables represent the 

geometric locations of the polygons present in a 

geometric space. The windows are taken as the input 

in an RDD and then stored as a list, which is treated 

as a broadcast variable. Then with this list, a final 

filter method is applied where if the point falls in 

any of the window then that point is kept and “true” 

Boolean is returned, if the point does not occur in 

any of the windows then the point is not considered 

and is discarded by giving a false value as output. 

The output of the code is written as a text file with 

all the points that fall in the windows in a text file in 

HDFS.  

3.6 Spatial Join Query 

In Spatial Join , the input provided is a set 

of points (x1,y1,x2,y2) in a window and a set of 

polygons (px1, px2, py1, py2) where (x1,y1) , 

(px1,py1) and (x2,y2) and (px2, py2) are the x and y 

coordinates denoting the latitude and longitude of 

the window points and the set of polygons. To 

implement this operation, at first a JavaRDD is 

taken to get each of the polygons windows. Then a 

broadcast list variable is created, much the same 

way as for the spatial range query. This broadcast 

variable is fed to a pair function. For every polygon 

present in the JavaRDD for the points, the windows 

are iterated over and if the polygon lies inside the 

window, the window is added to another list which 

is paired with that point and the value is returned in 

an RDD. The JavaRDD is then stored to a simple 

text file in HDFS  

3.7 Join Aggregation 

In spatial aggregation, the input is a set of 

window polygons (x1, y1, x2, y2) and a set of points 

(x1, y1). The expected output is for all the windows, 

a count of the number of points that lie inside that 

window should be given. For the implementation of 

this code, first of all the window points were taken 

as input in an RDD as a broadcast variable, then a 

flat map was created, which mapped each of the 

points to give out a mapping of a window and an 

integer value 1, which indicated that this window 

has encountered this point once. Once this flat map 

was created, the output of this had to be created into 

a simple key value pair. This was achieved through 

reading the output RDD and creating a string 

variable as the key, which included all the points of 

the window polygon appended, separated by 

underscores. Once these key-value mappings were 

created, these had to be reduced into simple form 

through adding the integer values for all the 

respective keys or polygons. This was done by 

making a “reduce-by-key” function which only 

aggregated the integer values for the keys present in 

the RDD. The output of this code came out as a 

String key with the value as the number of points 

that fall inside that particular window. This output is 

written into a flat file in HDFS. 

4. EXPERIMENTAL SETUP 

Experiment was perform on a LAN with a 

capacity of 100Mbps transfer rate. Experiment uses 

3 nodes as a worker and 1 node as a master. The 

hardware configuration on each node is provided 

below: 

Table 1 

Node (Master / Worker) Memory Processor 

Node 1 (M & W) 8 GB 4th Gen, Intel i5  

Node 2 (W) 4GB 4th Gen, Intel i5  

Node 3 (W) 8GB 4th Gen, Intel i5  

Node 4 (W) 8GB 4th Gen, Intel i5  

 

A HDFS cluster is also formed consists of 

all above nodes for storing of input and output files. 

A replication factor of 2 is used for partition 

tolerance. While consistency and availability was 

handle by HDFS. The experiment uses 4 datasets of 

5MB, 50MB, 100MB, and 200MB respectively to 

perform regression testing on each functions. 

5. EXPERIMENTAL DETAILS 

Experiments were conducted using 

experimental setup parameters and following results 

are obtained. The following are the time 

(Millisecond) vs Dataset size (Megabyte) graph for 

each operation. 

The variations done were the number of 

nodes in the cluster, the size of the data used and the 

different operations being performed. The time 

taken for all of the operations was noted and graphs 

were made out of them. 

5.1 Farthest Point 

The experimental result for the farthest 

points operation suggests that as the dataset size 

increases, the time taken for the operation first 

increases in O (nlogn) time but at later stage with 

large dataset it increases in O (n^2) time. Also as we 

increases number of nodes (i.e. scale out), the time 



taken for operation is almost increasing linearly with 

dataset size. 

 

 The experimental result for the farthest 

points operation suggests that as the dataset size 

increases, the time taken for the operation first 

increases in O (nlogn) time but at later stage with 

large dataset it increases in O (n^2) time. Also as we 

increases number of nodes (i.e. scale out), the time 

taken for operation is almost increasing linearly with 

dataset size.  

5.2 Closest Pair 

 

The plot shows that the time taken for 

closest pair improved with increase in number of 

nodes. The graph appears impeccable as with 

increase in number of nodes data gets partitioned 

across various nodes and operation is parallelized 

and as operation returns only a pair of points at each 

recursion, network overhead is not significant. 

 

5.3 Convex Hull 

The graph suggests that the time taken for 

the output of the code for Convex Hull increases 

with increase in dataset(as expected) but shows a 

degradation of time taken when the number of nodes 

is increased (keeping the data size same). The 

efficiency is non-linear as for smaller datasets the 

network overhead trumps the computational 

rescources added. We can thus see that maxium gain 

has been obtained when the dataset of around 200 

MB was considered and was run on cluster of 4 

nodes. 

 

5.4 Polygon Union 

 

The graph suggests that the time taken for 

getting the output of union operation increases with 

increase in the size of the dataset. The time taken for 

small dataset of 5MB is almost same even when run 

on multiple nodes as the netwrok cost and 

communication cost is also added. But with the 

increase in number of nodes , the time taken for 

union decreases as the dataset size is increased.We 

can also observe that as the number of nodes are 

increased the running time decreses for the given 

size of dataset. 

 

5.5 Spatial Range Query 

The spatial range query is shown to take 

higher time for single node, which is as expected. 

The abnormality is when the nodes are increased 

from 3 to 4. The graphs for 3 nodes and 4 nodes 

overlap almost exactly on each other. This is 

because when increasing the number of nodes, the 

parallelism increases, but the network cost and the 

communication cost in general also increases, so the 

system has to spend more time in communication. 



 

 

5.6 Spatial Join Query 

 

The graph suggests that the time taken for 

the output of the code for spatial Join query was 

similar when tested with 2 , 3 or 4 nodes, this is 

because of the case that even when the files were 

copied to the cluster of hadoop, the files got stored 

only at 2 machines and not other machines, as the 

replication factor was kept as 2. The graph rightly 

shows an increased time taken when there was only 

one node present in the Hadoop cluster, which is 

quite logical as the amount of distribution to be 

managed by a single node is much higher with a 

replication factor of 2. And all the memory 

utilizations were to be managed by a single machine 

and not a cluster of machines. 

 

5.7 Spatial Aggregation 

The experimental results for the spatial 

aggregation show that the code takes much less time 

for a multinode cluster as compared to that for a 1 

node cluster. The drop in time is sizeable for a shift 

from a single node to 2 nodes in a cluster, but the 

time dips only slightly for movement from 2 nodes 

to 3 nodes and 3 nodes to 4 nodes. Also it can be 

observed from the graph that the time remains 

nearly constant even after increasing the data size 

frm 5 MB to 200 MB. This shows that the context 

required to maintain a data size of 5 MB is much 

more as compared to the data itself, but as the data 

size increases the context becomes less relevant and 

is correctly reflected in the graph. 

 

6. CONCLUSION 

The spatial operations that were written in 

spark are complex operations to be written in a 

distributed manner. The operations if done in a 

single node system can be easily written. But the 

overall time complexity of the distributed code 

becomes relevant only when the data size becomes 

huge. The data sizes provided for the current project 

were of 200MB. Which can be easily 

accommodated in memory in single node code 

structure. Overall, writing the code for the spatial 

operations in Spark is much more complex as 

compared to that written in a single system 

architecture. Spark is an evolving technology and 

much work needs to be done over it to make it more 

robust and flexible for making durable code. The in-

memory architecture is a very big advantage in case 

of the distributed architectures as the hardware is 

getting inexpensive by the day. Other distributed 

frameworks such as Map-reduce are much more 

flexible but have a number of constraints which 

Spark has tried to overcome. Map-Reduce in 

particular has seen a lot of enhancements and 

architecture level upgrades, which has made it more 

flexible to code and extend.  
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APPENDIX A: 

1. Farthest Point 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost  (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 24 5.1 10 180 5 

1 25 5.2 11 632 50 

1 36 6.3 13 1190 100 

1 53 7.4 14 3132 200 

2 20 25 6.25 12.5 100 110 200 5 

2 23 29 7.30 14.5 105 105 410 50 

2 33 39 6.85 13.8 105 105 817 100 

2 52 60 8.05 19.30 105 105 1417 200 

3 20 25 20 6.25 12.5 6.25 105 105 105 150 5 

3 23 29 23 7.30 14.5 7.30 105 105 105 390 50 

3 33 39 33 6.85 13.8 6.85 105 105 105 689 100 

3 52 60 52 8.05 19.30 8.05 105 105 105 945 200 
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2. Closest Pair 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 24 5.1 10 190 5 

1 25 5.2 11 642 50 

1 36 6.3 13 1195 100 

1 53 7.4 14 3150 200 

2 25 29 4.7 9.2 105 110 205 5 

2 27 31 6.1 11.3 105 105 454 50 

2 32 37 7.2 13.1 105 105 793 100 

2 45 52 9.2 18.4 105 105 1022 200 

3 20 25 20 6.25 12.5 6.25 105 105 105 212 5 

3 23 29 23 7.30 14.5 7.30 105 105 105 403 50 

3 33 39 33 6.85 13.8 6.85 105 105 105 650 100 

3 52 60 52 8.05 19.30 8.05 105 105 105 967 200 

 

 

3. Convex Hull 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 15 4.3 10 134 5 

1 25 7.1 10 502 50 

1 29 8.2 11 980 100 

1 37 9.1 11 1603 200 

2 19 36 4.3 9.9 90 85 156 5 

2 23 39 7.6 8.3 1200 790 360 50 

2 24 45 8.3 8.2 3867 968 750 100 

2 27 54 9.1 9.3 4722 1512 1350 200 

3 19 32 22 5.1 4.9 9.7 100 110 180 145 5 

3 25 32 22 7.1 15.9 7.2 2500 620 500 280 100 

3 28 35 25 8.2 17.8 8.3 3400 2700 2560 560 50 

3 31 37 29 9.1 19.5 8.5 3800 2900 2800 985 200 

 

 

 

 

 

 

 

 



4. Polygon Union 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 24 5.1 10 180 5 

1 25 5.2 14 632 50 

1 36 6.3 12 1190 100 

1 53 7.4 11 3132 200 

2 25 228 5.0 9.2 1052 1010 187 5 

2 27 33 6.5 11.3 1045 1005 520 50 

2 32 39 7.7 13.1 1100 1050 989 100 

2 45 52 9.9 18.4 1120 1070 2096 200 

3 20 25 20 6.25 10.5 6.25 1052 1010 1048 192 5 

3 23 29 23 7.30 13.5 7.30 1045 1005 1040 455 50 

3 33 39 33 6.85 13.8 6.85 1100 1050 1090 876 100 

3 52 60 52 8.05 19.30 8.05 1120 1070 1120 1654 200 

 

 

5. Spatial Range Query 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 24 5.1 10 50 5 

1 29 5.2 11 240 50 

1 36 6.3 13 560 100 

1 45 7.4 14 1250 200 

2 25 29 4.7 9.2 105 110 45 5 

2 27 31 6.1 11.3 105 105 225 50 

2 32 37 7.2 13.1 105 105 480 100 

2 45 52 9.2 18.4 105 105 996 200 

3 20 25 24 5.25 11.5 5.25 105 105 105 50 5 

3 23 29 22 6.60 11.5 6.60 105 105 105 230 50 

3 33 39 35 6.85 13.8 6.85 105 105 105 390 100 

3 52 60 52 8.05 19.30 8.05 105 105 105 680 200 

 

 

 

 

 

 

 

 

 



6. Spatial Join Query 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 12 5.5 10 65 5 

1 24 6.4 11 280 50 

1 29 7.8 13 650 100 

1 35 8.1 14 1420 200 

2 18 20 5.4 4.5 105 110 55 5 

2 12 15 6.6 7.0 150 150 250 50 

2 27 25 7.5 8.0 150 150 590 100 

2 40 38 8.7 9.6 150 150 1350 200 

3 20 25 20 5.0 12.5 6.25 150 150 150 60 5 

3 23 29 23 7.3 14.5 7.30 150 150 150 220 50 

3 33 39 33 8.4 13.8 6.85 150 150 150 420 100 

3 50 55 48 8.6 19.30 8.05 150 150 150 940 200 

 

 

7. Spatial Aggregation 
 

 

Number 

of nodes 

CPU utilization (%) Memory utilization 

(% of total RAM) 

Communication 

Cost (KBps) 

Runtime 

(second) 

Data 

Size (MB) 

1 24 5.1 10 80 5 

1 25 5.2 11 280 50 

1 36 6.3 13 650 100 

1 53 7.4 14 1420 200 

2 25 29 4.7 5.5 150 150 85 5 

2 27 31 6.1 5.0 150 150 250 50 

2 32 37 7.2 6.9 150 150 590 100 

2 45 52 9.2 10.1 150 150 1350 200 

3 20 25 20 60 12.5 6.25 150 150 150 75 5 

3 23 29 23 220 14.5 7.30 150 150 150 220 50 

3 33 39 33 420 13.8 6.85 150 150 150 420 100 

3 52 60 52 940 19.30 8.05 150 150 150 940 200 

 


